The Boltzmann Equation

Joachim Kopp (jkopp@ph.tum.de)

Technische Universität München Lehrstuhl für Theoretische Elementarteilchenphysik (Prof. Lindner)

Studienstiftung des Deutschen Volkes Summer School on Phase Transitions 28.08. – 10.09.2005, St. Johann

Outline

- Introduction to Many-Particle Dynamics
 - The Hard Sphere Model of a Gas
 - The Liouville Equation
 - The BBGKY Hierarchy
- The Boltzmann Transport Equation
 - Informal Derivation
 - Sketch of a Rigorous Proof
 - Some remarks on (ir)reversibility
- Generalizations and Limitations of the Boltzmann Equation

29.08.2005

Outline

- Introduction to Many-Particle Dynamics
 - The Hard Sphere Model of a Gas
 - The Liouville Equation
 - The BBGKY Hierarchy
- The Boltzmann Transport Equation
 - Informal Derivation
 - Sketch of a Rigorous Proof
 - Some remarks on (ir)reversibility
- Generalizations and Limitations of the Boltzmann Equation

29.08.2005

The Hard Sphere Model of a Gas

- Particles are modeled as solid spheres wth diameter σ .
- Dynamical features are linear movement and collisions among particles
- We will work with periodic boundary conditions (\Rightarrow no collisions with $\partial \Lambda$)
- The state of each particle is given by its position x_i and its velocity ξ_i .
- The state of the system is given as a point $z^N = (x_1, \xi_1 \dots x_N, \xi_N)$ in the phase space $\Gamma = \{z^N \in \Lambda^N \times \mathbb{R}^{3N}; |x_i x_j| \geq \sigma \text{ for } i \neq j\}$

Probability distribution functions

- Number of particles $N \sim \mathcal{O}(10^{23}) \Longrightarrow$ For practical purposes we use a probability density function $P(z^N,t) = P(x_1,\xi_1,\ldots,x_N,\xi_N,t)$, $P(z^N,t) \in L^1(\Gamma)$.
- Essential property:

$$P(\ldots x_i, \xi_i \ldots x_j, \xi_j \ldots, t) = P(\ldots x_j, \xi_j \ldots x_i, \xi_i \ldots, t)$$

• Let $T^t: \Gamma \to \Gamma$ describe the time evolution of the system. We have for all Borel sets A:

$$\int_A P(z^N, 0) dz^N = \int_{T^t A} P(T^t z^N, t) d(T^t z^N) = \int_A P(T^t z^N, t) \left| \frac{\partial T^t z^N}{\partial z^N} \right| dz^N$$

• We will now prove that $\left| \frac{\partial T^t z^N}{\partial z^N} \right| = 1$.

The Jacobian of the time evolution

• Between collisions: $x_i' = x_i + \xi_i t$, $\xi_i' = \xi_i$, so

$$\left|\frac{\partial(x_i',\xi_i')}{\partial(x_j,\xi_j)}\right|_{\mathsf{no\ collision}} = \delta_{ij}\left|\left(\begin{array}{cc}1 & t\\0 & 1\end{array}\right)\right| = 1$$

• At collision points: $x_i' = x_i$, $\xi_i' \neq \xi_i$, so

$$rac{\partial x_i'}{\partial x_j} = \delta_{ij} \; ; \quad rac{\partial x_i'}{\partial \xi_j} = 0 \quad ext{for } 1 \leq i, j \leq N.$$

The Jacobian of the time evolution

At collision points we have:

$$\begin{array}{rcl} \xi_1+\xi_2&=&\xi_1'+\xi_2'&\text{Momentum conservation}\\ |\xi_1|^2+|\xi_2|^2&=&|\xi_1'|^2+|\xi_2'|^2&\text{Energy conservation} \end{array}$$

It follows that

$$\begin{split} \xi'_{1\alpha} &= \xi_{1\alpha} - n_{\alpha}[n_{\beta} \cdot (\xi_{1\beta} - \xi_{2\beta})] \\ \xi'_{2\alpha} &= \xi_{2\alpha} + n_{\alpha}[n_{\beta} \cdot (\xi_{1\beta} - \xi_{2\beta})] \end{split}$$
 where $n = (x_1 - x_2)/|x_1 - x_2|$. So
$$\frac{\partial \xi'_{1\alpha}}{\partial \xi_{1\beta}} = \delta_{\alpha\beta} - n_{\alpha}n_{\beta}$$

$$\frac{\partial \xi'_{1\alpha}}{\partial \xi_{2\beta}} = n_{\alpha}n_{\beta}$$

The Jacobian of the time evolution

• Putting the pieces together:

$$\begin{split} \left| \frac{\partial (x_i', \xi_i')}{\partial (x_j, \xi_j)} \right|_{\text{collision}} &= \begin{bmatrix} \frac{\partial x_1}{\partial x_1} & \frac{\partial x_1}{\partial x_2} & \frac{\partial \xi_{1/2}}{\partial x_2} \\ \frac{\partial x_2}{\partial x_1} & \frac{\partial x_2}{\partial x_2} & \frac{\partial \xi_{1/2}}{\partial x_{1/2}} \\ \\ \frac{\partial x_{1/2}}{\partial \xi_{1/2}} & \frac{\partial \xi_1}{\partial \xi_1} & \frac{\partial \xi_1}{\partial \xi_2} \\ \frac{\partial x_{1/2}}{\partial \xi_{1/2}} & \frac{\partial \xi_2}{\partial \xi_1} & \frac{\partial \xi_2}{\partial \xi_2} \end{bmatrix} \\ &= \begin{bmatrix} \mathbb{1} & \mathbb{0} & & & \\ \mathbb{0} & \mathbb{1} & & & \\ & & & & \\ \mathbb{0} & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\$$

- Several (distinct) collisions at the same time do not change this result.
- The following sets have zero measure and can be neglected:
 - Configurations leading to collisions that involve 3 or more particles.
 - Configurations leading to infinitely many collisions in a finite time.

(Proof: Cercignati, Illner, Pulvirenti: The Mathematical theory of Dilute Gases, Springer 1994)

The Liouville Equation

We had

$$\int_{A} P(z^{N}, 0) = \int_{A} P(T^{t}z^{N}, t) \underbrace{\left| \frac{\partial T^{t}z^{N}}{\partial z^{N}} \right|}_{=1} dz^{N}$$

As A was arbitrary, we obtain the Liouville Equation

Theorem (Liouville Equation)

For a hard sphere system with a measurable probability density function P the following equation holds:

$$\frac{d}{dt}P(T^tz^N,t) = 0 \quad \text{for almost all } z^N$$

For smooth P this reduces to

$$\frac{\partial P}{\partial t} + \sum_{i=1}^{N} \xi_i \frac{\partial P}{\partial x_i} = 0$$

The *s*-particle distribution function

The N-particle distribution P is not of much practical use. Therefore we
define the s-particle distribution function

$$P^{(s)}(x_1,\xi_1,\ldots,x_s,\xi_s,t) = \int P(x_1,\xi_1,\ldots,x_N,\xi_N) \prod_{j=s+1}^N dx_j d\xi_j$$

It gives the probability of finding s preselected particles in a configuration $(x_1, \xi_1 \dots x_s, \xi_s)$, leaving the parameters of the other particles arbitrary.

- We will now derive a relation between $P^{(s)}$ and $P^{(s+1)}$.
- For smooth P, the Liouville equation $\frac{\partial P}{\partial t} + \sum_{i=1}^N \xi_i \frac{\partial P}{\partial x_i} = 0$ yields

$$\frac{\partial P^{(s)}}{\partial t} + \sum_{i=1}^{s} \int \xi_{i} \frac{\partial P}{\partial x_{i}} \prod_{j=s+1}^{N} dx_{j} d\xi_{j}$$

$$+ \sum_{k=s+1}^{N} \int \xi_{k} \frac{\partial P}{\partial x_{k}} \prod_{j=s+1}^{N} dx_{j} d\xi_{j} = 0$$

Derivation of the BBGKY Hierarchy

First integral:

$$\sum_{i=1}^{s} \int \xi_i \frac{\partial P}{\partial x_i} \prod_{j=s+1}^{N} dx_j d\xi_j = \sum_{i=1}^{s} \xi_i \frac{\partial P^{(s)}}{\partial x_i} - \sum_{i=1}^{s} \sum_{k=s+1}^{N} \int P^{(s+1)} \xi_i \cdot n_{ik} d\sigma_{ik} d\xi_k$$

 $d\sigma_{ik}$ = surface element of the sphere $|x_i - x_k| = \sigma$ around x_k

 n_{ik} = Outer normal to this sphere

 $P^{(s+1)} = P^{(s+1)}(x_1, \xi_1 \dots x_s, \xi_s, x_i - n_{ik}\sigma, \xi_k, t)$

Derivation of the BBGKY Hierarchy

• The second integral can be solved using the Gauss theorem:

$$\sum_{k=s+1}^{N} \int \xi_{k} \frac{\partial P}{\partial x_{k}} \prod_{j=s+1}^{N} dx_{j} d\xi_{j} =$$

$$\sum_{k=s+1}^{N} \sum_{i=1}^{s} \int P^{(s+1)} \xi_{k} \cdot n_{ik} d\sigma_{ik} d\xi_{k} + \sum_{\substack{i,k=s+1\\i\neq k}}^{N} \int P^{(s+2)} \xi_{k} \cdot n_{ik} d\sigma_{ik} d\xi_{k} dx_{i} d\xi_{i} =$$

$$\sum_{k=s+1}^{N} \sum_{i=1}^{s} \int P^{(s+1)} \xi_{s+1} \cdot n_{i} d\sigma_{i} d\xi_{s+1} - \frac{1}{2} \sum_{\substack{i,k=s+1\\i\neq k}}^{N} \int P^{(s+2)} \cdot \underbrace{(\xi_{i} - \xi_{k}) \cdot n_{ik} d\sigma_{ik} d\xi_{k} dx_{i} d\xi_{i}}_{=:V_{ik}}$$

• At collisions, each point on the hemisphere $V_{ik} \cdot n_{ik} > 0$ correspondes to a point on $V_{ik} \cdot n_{ik} < 0$:

$$P^{(s+2)}(\dots x_i, \xi_i, x_k, \xi_k, t) = P^{(s+2)}(\dots x_i, \xi_i - n_{ik}(n_{ik}V_{ik}), x_k, \xi_k + n_{ik}(n_{ik}V_{ik}), t)$$

• Therefore, $\int P^{(s+2)} \dots = 0$.

Derivation of the BBGKY Hierarchy

Back to the original equation:

$$\frac{\partial P^{(s)}}{\partial t} + \sum_{i=1}^{s} \xi_{i} \frac{\partial P^{(s)}}{\partial x_{i}} = (N - s) \sum_{i=1}^{s} \int P^{(s+1)} \cdot (\xi_{i} - \xi_{s+1}) \cdot n_{i} d\sigma_{i} d\xi_{s+1}$$

$$\stackrel{x_{s+1} \to x_{i} - n\sigma}{=} (N - s) \sigma^{2} \sum_{i=1}^{s} \int_{S^{2}} P^{(s+1)} (\xi_{i} - \xi_{s+1}) \cdot n \, dn \, d\xi_{s+1}$$

$$=: Q_{s+1}^{\sigma} P^{(s+1)} (z^{s}, t)$$

 For less stringent assumptions, we obtain the general form of the Born-Bogoliubov-Green-Kirkwood-Yvon (BBGKY) hierarchy:

Theorem (BBGKY Hierarchy)

$$\frac{d}{dt}P^{(s)}(T^tz^s,t) = Q_{s+1}^{\sigma}P^{(s+1)}(T^tz^s,t)$$

$$Q_{s+1}^{\sigma}P^{(s+1)}(T^tz^s,t) = (N-s)\sigma^2 \sum_{i=1}^s \int dn \int d\xi_{s+1}(\xi_i - \xi_{s+1}) \cdot n$$

$$P^{(s+1)}(T^tz^s, T^tx_i - n\sigma, \xi_{s+1}, t)$$

Outline

- Introduction to Many-Particle Dynamics
 - The Hard Sphere Model of a Gas
 - The Liouville Equation
 - The BBGKY Hierarchy
- The Boltzmann Transport Equation
 - Informal Derivation
 - Sketch of a Rigorous Proof
 - Some remarks on (ir)reversibility
- Generalizations and Limitations of the Boltzmann Equation

Informal Derivation of the Boltzmann Equation

- BBGKY hierarchy is impractical for real calculations: Equation for $P^{(s)}$ depends of $P^{(s+1)}$.
- Intuitively, chaotic particle motion should be uncorrelated \Rightarrow There should be a closed equation for $P^{(1)}(x, \xi, t)$
- "Chaos" means

$$P^{(s)}(x_1, \xi_1 \dots x_s, \xi_s, t) = \prod_{i=1}^s P^{(1)}(x_i, \xi_i, t)$$

- We will work in the Boltzmann-Grad Limit $N \to \infty$, $\sigma \to 0$, $N\sigma^2 = \alpha \in \mathbb{R}$.
- Insert this into the BBGKY equation for $P^{(1)}$:

$$\frac{dP^{(1)}(x,\xi,t)}{dt} = Q_2^{\sigma}P^{(2)}(x,\xi,t)$$

$$= \alpha \int_{S^2} dn \int d\xi_*(\xi - \xi_*) \cdot n \, P^{(2)}(x,\xi,x,\xi_*,t)$$

$$= \alpha \int_{(\xi - \xi_*) \cdot n > 0} dn \int d\xi_* |(\xi - \xi_*) \cdot n|$$

$$\left(P^{(1)}(x,\xi',t)P^{(1)}(x,\xi'_*,t) - P^{(1)}(x,\xi,t)P^{(1)}(x,\xi_*,t)\right)$$

Informal Derivation of the Boltzmann Equation

• We obtain the Boltzmann Equation:

$$\frac{dP^{(1)}(x,\xi,t)}{dt} = \alpha \int_{S^+} dn \int d\xi_* |(\xi - \xi_*) \cdot n|$$

$$\left(P^{(1)}(x,\xi',t) P^{(1)}(x,\xi'_*,t) - P^{(1)}(x,\xi,t) P^{(1)}(x,\xi_*,t) \right)$$

Intuitive illustration: Without collisions the Liouville equation yields

$$\frac{\partial P^{(1)}}{\partial t} + \xi \frac{\partial P^{(1)}}{\partial x} = 0$$

- The right hand side of the Boltzmann Equation has the form Gain − Loss
 ⇒ It describes the influence of collisions.
- The informal derivation lacks the proofs that
 - The chaos assumption $P^{(s)} = \prod P^{(1)}$ is justified for t > 0
 - The limit $N \to \infty$, $\sigma \to 0$, $N\sigma^2 = \alpha$ exists.

Formulation of the Theorem

Start with the BBGKY hierarchy:

$$\frac{d}{dt}P^{(s)}(T^{t}z^{s},t) = Q^{\sigma}_{s+1}P^{(s+1)}(T^{t}z^{s},t)$$

$$Q^{\sigma}_{s+1}P^{(s+1)}(T^{t}z^{s},t) = (N-s)\sigma^{2}\sum_{i=1}^{s}\int_{S^{2}}dn\int d\xi_{s+1}(\xi_{i}-\xi_{s+1})\cdot n$$

$$P^{(s+1)}(T^{t}z^{s},T^{t}x_{i}-n\sigma,\xi_{s+1},t)$$

• In the Boltzmann-Grad limit $N\to\infty,\,\sigma\to0,\,N\sigma^2=\alpha$ we expect to obtain the Boltzmann Hierarchy

$$\frac{d}{dt}f^{(s)}(T_0^t z^s, t) = Q_{s+1}^0 f^{(s+1)}(T_0^t z^s, t)$$

where T_0^t denotes collisionless flow.

- If $f^{(s)}(z^s,t) = \prod_{i=1}^s f(x_i,\xi_i,t)$, the Boltzmann hierarchy and the Boltzmann equation are equivalent.
- Idea: Prove that the Boltzmann hierarchy is really the limit of the BBGKY hierarchy and that its solution factorizes under certain assumptions.

Formulation of the Theorem

Theorem (Rigorous Validity of the Boltzmann Equation)

Let
$$(\Lambda \times \mathbb{R}^3)^{s,\sigma}_{\neq} = \{z^s \in \Lambda^s \times \mathbb{R}^{3s}; |x_i - x_j| > \sigma, i \neq j, \sigma \geq 0\}$$
. Assume that

- $P_0^{(s)}(z^s) = P^{(s)}(z^s, 0)$ is continuous on $(\Lambda \times \mathbb{R}^3)_{\neq}^{s, \sigma}$ and at collision points.
- ② The limit $\lim_{N\to\infty} P_0^{(s)} = f_0^{(s)}(z^s)$ with continuous $f_0^{(s)}: \Lambda^s \times \mathbb{R}^{3s} \to \mathbb{R}$ exists and is uniform on compact subsets of $(\Lambda \times \mathbb{R}^3)^{s,\sigma}_{\neq}$.
- **1** The initial values satisfy $f_0^{(s)}(z^s) = \prod_{i=1}^s f_0(x_i, \xi_i)$ ("Initial chaos")
- There are positive constants β , C and b such that $\sup_{z^s} P_0^{(s)} \leq C \cdot b^s \cdot \exp\left(-\beta \sum_{i=1}^s \xi_i^2\right)$

Then, on a sufficiently small interval $[0,t_0]$ the solution of the Boltzmann hierarchy exists and is unique. It is the limit of the solution of the BBGKY hierarchy and has the form $f^{(s)}(z^s,t) = \prod_{i=1}^s f(x_i,\xi_i,t)$, i.e. factorization is preserved. Here f is a solution of the Boltzmann equation to the initial data f_0 .

(Full Proof: Cercignati, Illner, Pulvirenti: The Mathematical theory of Dilute Gases, Springer 1994)

Outline of the Proof

• The BBGKY hierarchy $\frac{d}{dt}P^{(s)}(T^tz^s,t)=Q^{\sigma}_{s+1}P^{(s+1)}(T^tz^s,t)$ is solved by

$$\begin{split} P^{(s)}(T^tz^s,t) &= P_0^{(s)}(z^s) + \int_0^t dt_1 \left(Q_{s+1}^{\sigma}P^{s+1}\right) \left(T^{t_1}z^s,t_1\right) \\ \Leftrightarrow P^{(s)}(z^s,t) &= S_{\sigma}(t)P_0^{(s)}(z^s) + \int_0^t dt_1 S_{\sigma}(t-t_1) \left(Q_{s+1}^{\sigma}P^{s+1}\right) (z^s,t_1) \\ \text{where } S_{\sigma}(t)f(z^s) &= f(T^{-t}z^s). \end{split}$$

Iteration of this formula gives

$$P^{(s)}(z^{s},t) = \sum_{n=0}^{N-s} \int_{0}^{t} dt_{1} \int_{0}^{t_{1}} dt_{2} \dots \int_{0}^{t_{n-1}} dt_{n}$$

$$S_{\sigma}(t-t_{1})Q_{s+1}^{\sigma}S_{\sigma}(t_{1}-t_{2}) \dots Q_{s+n}^{\sigma}S_{\sigma}(t_{n})P_{0}^{(s+n)}(z^{s})$$

For the Boltzmann hierarchy:

$$f^{(s)}(z^s,t) = \sum_{n=0}^{\infty} \int_0^t dt_1 \int_0^{t_1} dt_2 \dots \int_0^{t_{n-1}} dt_n$$

$$S_0(t-t_1)Q_{s+1}^0S_0(t_1-t_2)\dots Q_{s+n}^0S_0(t_n)f_0^{(s+n)}(z^s)$$

The series is infinite, therefore convergence is nontrivial!

J. Kopp (TUM) The Boltzmann Equation 29.08.2005

Outline of the Proof

The proof proceeds as follows:

- **1** Show that the convergence of the BBGKY series $\sum a_n^{\sigma}$ to the Boltzmann series $\sum a_n^0$ holds term by term.
- ② Find a series $\sum b_n < \infty$ satisfying $0 \le |a_n^{\sigma}|, |a_n^{0}| \le b_n$. The existence of such a series proves the convergence $\sum a_n^{\sigma} \to \sum a_n^{0}$.
- Uniqueness follows from the constructions in the previous steps.
- ① Proof of the factorization property: The solution of the Boltzmann hierarchy for $f^{(1)}$ exists according to step ② and ②. Show that $f^{(s)} = \prod_{i=1}^s f^{(1)}(x_i, \xi_i, t)$ solves the Boltzmann hierarchy. By uniqueness (step ③) the propagation of chaos follows.

Some remarks on (ir)reversibility

- Consider the time reversal operation $T: t \to -t$.
- ullet Classical mechanics is invariant unter \mathcal{T} : Every motion can be reversed.
- The Boltzmann equation is not \mathcal{T} -invariant (no proof here):

$$\frac{dP^{(1)}(x,\xi,t)}{dt} = C$$

$$\downarrow \mathcal{T} \qquad \qquad \downarrow \mathcal{T}$$

$$\frac{dP^{(1)}(x,\xi,t)}{dt} = C$$

- The proof of the Boltzmann equation shows how one can obtain irreversible dynamics from a reversible theory.
- Intuitive explanation: In Boltzmann dynamics, the inverse process requires initial conditions that are strongly disfavoured if initial chaos $f_0^{(s)} = \prod f$ holds.

Outline

- Introduction to Many-Particle Dynamics
 - The Hard Sphere Model of a Gas
 - The Liouville Equation
 - The BBGKY Hierarchy
- The Boltzmann Transport Equation
 - Informal Derivation
 - Sketch of a Rigorous Proof
 - Some remarks on (ir)reversibility
- 3 Generalizations and Limitations of the Boltzmann Equation

Generalizations of the Boltzmann Equation

Electrons in a Metal

$$\begin{split} \frac{\partial f}{\partial t} + \frac{d\xi_i}{dt} \frac{\partial f}{\partial \xi_i} + \frac{dx_i}{dt} \frac{\partial f}{\partial x_i} &= \\ \frac{Vm^3}{(2\pi)^3} \int \underbrace{[f(\xi')(1-f(\xi))\mathcal{S}(\xi' \to \xi)}_{\text{Gain}} - \underbrace{f(\xi)(1-f(\xi'))\mathcal{S}(\xi \to \xi')}_{\text{Loss}}] \end{split}$$

$$f(x, \xi, t)$$
 = Electron distribution function V = Volume of the semiconductor S = Scattering probability M = Electron mass

Particle Transport in the Early Universe

$$\frac{\partial n}{\partial t} + 3Hn = C$$

n(|x|,t) = Particle density, integrated over ξ

H = Hubble's constant parametrizing the expansion of the universe

C = Collision integral

Limitations of the Boltzmann Equation

Applicability of the Boltzmann Equation to processes in the early universe is doubtful:

- Time between two collisions is comparable to duration of collision
- Hard sphere potential is a bad approximation to the real dynamics
- Quantum Effects cannot be described by simple collision integrals

Conclusions

- The hard sphere model can describe many physical systems.
- Its microscopic evolution is governed by the Liouville equation dP/dt=0.
- The BBGKY hierarchy connects the full probability density function P to the 1-particle distribution $P^{(1)}$.
- In the Boltzmann-Grad limit $N\to\infty,\,\sigma\to0,\,N\sigma^2=\alpha$ we obtain the Boltzmann equation

$$\frac{dP^{(1)}(x,\xi,t)}{dt} = N\sigma^2 \int_{S^+} dn \int d\xi_* |(\xi - \xi_*) \cdot n|$$

$$\left(P^{(1)}(x,\xi',t) P^{(1)}(x,\xi'_*,t) - P^{(1)}(x,\xi,t) P^{(1)}(x,\xi_*,t) \right)$$

which is a closed equation for the 1-particle distribution.

- The proof of the Boltzmann equation shows how irreversible behaviour arises in nature.
- The Boltzmann equation can be extended to describe complex systems like semiconductors or the early universe. However, it has its limitations in extreme situations.